Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Emerg Infect Dis ; 29(6): 1240-1243, 2023 06.
Article in English | MEDLINE | ID: covidwho-2315020

ABSTRACT

We performed 2 surveys during 2022 to estimate point prevalences of SARS-CoV-2 infection compared with overall seroprevalence in Sweden. Point prevalence was 1.4% in March and 1.5% in September. Estimated seroprevalence was >80%, including among unvaccinated children. Continued SARS-CoV-2 surveillance is necessary for detecting emerging, possibly more pathogenic variants.


Subject(s)
COVID-19 , Child , Humans , COVID-19/epidemiology , Prevalence , SARS-CoV-2 , Sweden/epidemiology , Seroepidemiologic Studies
2.
Lancet Reg Health Eur ; : 100646, 2023 May 06.
Article in English | MEDLINE | ID: covidwho-2311487

ABSTRACT

Background: To inform future preventive measures including repeated vaccinations, we have searched for a clinically useful immune correlate of protection against fatal COVID-19 among nursing homes residents. Methods: We performed repeated capillary blood sampling with analysis of S-binding IgG in an open cohort of nursing home residents in Sweden. We analyzed immunological and registry data from 16 September 2021 to 31 August 2022 with follow-up of deaths to 30 September 2022. The study period included implementation of the 3rd and 4th mRNA monovalent vaccine doses and Omicron virus waves. Findings: A total of 3012 nursing home residents with median age 86 were enrolled. The 3rd mRNA dose elicited a 99-fold relative increase of S-binding IgG in blood and corresponding increase of neutralizing antibodies. The 4th mRNA vaccine dose boosted levels 3.8-fold. Half-life of S-binding IgG was 72 days. A total 528 residents acquired their first SARS-CoV-2 infection after the 3rd or the 4th vaccine dose and the associated 30-day mortality was 9.1%. We found no indication that levels of vaccine-induced antibodies protected against infection with Omicron VOCs. In contrast, the risk of death was inversely correlated to levels of S-directed IgG below the 20th percentile. The death risk plateaued at population average above the lower 35th percentile of S-binding IgG. Interpretation: In the absence of neutralizing antibodies that protect from infection, quantification of S-binding IgG post vaccination may be useful to identify the most vulnerable for fatal COVID-19 among the oldest and frailest. This information is of importance for future strategies to protect vulnerable populations against neutralization resistant variants of concern. Funding: Swedish Research Council, SciLifeLab via Knut and Alice Wallenberg Foundation, VINNOVA. Swedish Healthcare Regions, and Erling Persson Foundation.

4.
Nat Commun ; 14(1): 1577, 2023 03 22.
Article in English | MEDLINE | ID: covidwho-2270916

ABSTRACT

Vaccination offers protection against severe COVID-19 caused by SARS-CoV-2 omicron but is less effective against infection. Characteristics such as serum antibody titer correlation to protection, viral abundance and clearance of omicron infection in vaccinated individuals are scarce. We present a 4-week twice-weekly SARS-CoV-2 qPCR screening in 368 triple vaccinated healthcare workers. Spike-specific IgG levels, neutralization titers and mucosal spike-specific IgA-levels were determined at study start and qPCR-positive participants were sampled repeatedly for two weeks. 81 (cumulative incidence 22%) BA.1, BA.1.1 and BA.2 infections were detected. High serum antibody titers are shown to be protective against infection (p < 0.01), linked to reduced viral load (p < 0.01) and time to viral clearance (p < 0.05). Pre-omicron SARS-CoV-2 infection is independently associated to increased protection against omicron, largely mediated by mucosal spike specific IgA responses (nested models lr test p = 0.02 and 0.008). Only 10% of infected participants remain asymptomatic through the course of their infection. We demonstrate that high levels of vaccine-induced spike-specific WT antibodies are linked to increased protection against infection and to reduced viral load if infected, and suggest that the additional protection offered by pre-omicron SARS-CoV-2 infection largely is mediated by mucosal spike-specific IgA.


Subject(s)
Breakthrough Infections , COVID-19 , Humans , Viral Load , COVID-19/prevention & control , SARS-CoV-2 , Health Personnel , Immunoglobulin A , Antibodies, Viral , Antibodies, Neutralizing
8.
Emerg Infect Dis ; 28(10): 2119-2121, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2002464

ABSTRACT

Given the recent surge in SARS-CoV-2 Omicron infections, we performed a quantitative PCR screening survey during June 28-29, 2022, in Stockholm, Sweden, to investigate SARS-CoV-2 point prevalence in a group with high exposure risk. Results showed SARS-CoV-2 infection in 2.3% of healthcare workers who were asymptomatic at time of sampling.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19 Testing , Health Personnel , Humans , Sweden/epidemiology
10.
Vaccines (Basel) ; 10(3)2022 Feb 24.
Article in English | MEDLINE | ID: covidwho-1726057

ABSTRACT

Heterologous primary immunization against SARS-CoV-2 is part of applied recommendations. However, little is known about duration of immune responses after heterologous vaccine regimens. To evaluate duration of immune responses after primary vaccination with homologous adeno-vectored ChAdOx1 nCoV-19 vaccine (ChAd) or heterologous ChAd/BNT162b2 mRNA vaccine (BNT), anti-spike-IgG and SARS-CoV-2 VOC-neutralizing antibody responses were measured in 354 healthcare workers (HCW) at 2 weeks, 3 months, 5 months and 6 months after the second vaccine dose. T-cell responses were investigated using a whole blood interferon gamma (IFN-γ) release assay 2 weeks and 3 months post second vaccine dose. Two hundred and ten HCW immunized with homologous BNT were enrolled for comparison of antibody responses. In study participants naïve to SARS-CoV-2 prior to vaccination, heterologous ChAd/BNT resulted in 6-fold higher peak anti-spike IgG antibody titers compared to homologous ChAd vaccination. The half-life of antibody titers was 3.1 months (95% CI 2.8-3.6) following homologous ChAd vaccination and 1.9 months (95% CI 1.7-2.1) after heterologous vaccination, reducing the GMT difference between the groups to 3-fold 6 months post vaccination. Peak T-cell responses were stronger in ChAd/BNT vaccinees, but no significant difference was observed 3 months post vaccination. SARS-CoV-2 infection prior to vaccination resulted in substantially higher peak GMTs and IFN-γ levels and enhanced SARS-CoV-2 specific antibody and T cell responses over time. Heterologous primary SARS-CoV-2 immunization with ChAd and BNT elicits a stronger initial immune response compared to homologous vaccination with ChAd. However, although the differences in humoral responses remain over 6 months, the difference in SARS-CoV-2 specific T cell responses are no longer significant three months after vaccination.

11.
EBioMedicine ; 70: 103523, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1356201

ABSTRACT

BACKGROUND: Recent reports demonstrate robust serological responses to a single dose of messenger RNA (mRNA) vaccines in individuals previously infected with SARS-CoV-2. Data on immune responses following a single-dose adenovirus-vectored vaccine expressing the SARS-CoV-2 spike protein (ChAdOx1 nCoV-19) in individuals with previous SARS-CoV-2 infection are however limited, and current guidelines recommend a two-dose regimen regardless of preexisting immunity. METHODS: We compared RBD-specific IgG and RBD-ACE2 blocking antibodies against SARS-CoV-2 wild type and variants of concern following two doses of the mRNA vaccine BNT162b2 in SARS-CoV-2 naïve healthcare workers (n=65) and a single dose of the adenovector vaccine ChAdOx1 nCoV-19 in 82 healthcare workers more than (n=45) and less than (n=37) 11 months post mild SARS-CoV-2 infection at time of vaccination. FINDINGS: The post-vaccine levels of RBD-specific IgG and neutralizing antibodies against the SARS-CoV-2 wild type and variants of concern including Delta lineage 1.617.2 were similar or higher in participants receiving a single dose of ChAdOx1 nCoV-19 vaccine post SARS-CoV-2 infection (both more than and less than 11 months post infection) compared to SARS-CoV-2 naïve participants who received two doses of BNT162b2 vaccine. INTERPRETATION: Our data support that a single dose ChAdOx1 nCoV-19 vaccine that is administered up to at least 11 months post SARS-CoV-2 infection serves as an effective immune booster. This provides a possible rationale for a single-dose vaccine regimen. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Subject(s)
Antibodies, Neutralizing/immunology , Antibody Formation/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adult , BNT162 Vaccine , ChAdOx1 nCoV-19 , Female , Health Personnel , Humans , Immunization, Secondary/methods , Immunoglobulin G/immunology , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods
12.
Clin Transl Immunology ; 10(7): e1306, 2021.
Article in English | MEDLINE | ID: covidwho-1293156

ABSTRACT

OBJECTIVES: Humoral and cellular immunity to SARS-CoV-2 following COVID-19 will likely contribute to protection from reinfection or severe disease. It is therefore important to characterise the initiation and persistence of adaptive immunity to SARS-CoV-2 amidst the ongoing pandemic. METHODS: Here, we conducted a longitudinal study on hospitalised moderate and severe COVID-19 patients from the acute phase of disease into convalescence at 5 and 9 months post-symptom onset. Utilising flow cytometry, serological assays as well as B cell and T cell FluoroSpot assays, we assessed the magnitude and specificity of humoral and cellular immune responses during and after human SARS-CoV-2 infection. RESULTS: During acute COVID-19, we observed an increase in germinal centre activity, a substantial expansion of antibody-secreting cells and the generation of SARS-CoV-2-neutralising antibodies. Despite gradually decreasing antibody levels, we show persistent, neutralising antibody titres as well as robust specific memory B cell responses and polyfunctional T cell responses at 5 and 9 months after symptom onset in both moderate and severe COVID-19 patients. CONCLUSION: Our findings describe the initiation and, importantly, persistence of cellular and humoral SARS-CoV-2-specific immunological memory in hospitalised COVID-19 patients long after recovery, likely contributing towards protection against reinfection.

13.
J Immunol ; 205(9): 2437-2446, 2020 11 01.
Article in English | MEDLINE | ID: covidwho-745207

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in late 2019 and has since become a global pandemic. Pathogen-specific Abs are typically a major predictor of protective immunity, yet human B cell and Ab responses during COVID-19 are not fully understood. In this study, we analyzed Ab-secreting cell and Ab responses in 20 hospitalized COVID-19 patients. The patients exhibited typical symptoms of COVID-19 and presented with reduced lymphocyte numbers and increased T cell and B cell activation. Importantly, we detected an expansion of SARS-CoV-2 nucleocapsid protein-specific Ab-secreting cells in all 20 COVID-19 patients using a multicolor FluoroSpot Assay. Out of the 20 patients, 16 had developed SARS-CoV-2-neutralizing Abs by the time of inclusion in the study. SARS-CoV-2-specific IgA, IgG, and IgM Ab levels positively correlated with SARS-CoV-2-neutralizing Ab titers, suggesting that SARS-CoV-2-specific Ab levels may reflect the titers of neutralizing Abs in COVID-19 patients during the acute phase of infection. Last, we showed that IL-6 and C-reactive protein serum concentrations were higher in patients who were hospitalized for longer, supporting the recent observations that IL-6 and C-reactive protein could be used as markers for COVID-19 severity. Altogether, this study constitutes a detailed description of clinical and immunological parameters in 20 COVID-19 patients, with a focus on B cell and Ab responses, and describes tools to study immune responses to SARS-CoV-2 infection and vaccination.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , Betacoronavirus/immunology , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Hospitalization , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Adult , Aged , Biomarkers/blood , C-Reactive Protein/analysis , COVID-19 , Cohort Studies , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Female , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Interleukin-6/blood , Lymphocyte Activation , Male , Middle Aged , Nucleocapsid Proteins/immunology , Pandemics , Phosphoproteins , Pneumonia, Viral/virology , SARS-CoV-2 , Sweden/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL